Canadian ABC Formula/Conversion Table for Water Treatment, Distribution and Laboratory Exams

Alkalinity, as mg CaCO₃/L = $\frac{(\text{Titrant Volume, mL})(\text{Acid Normality})(50,000)}{\text{Sample Volume, mL}}$ Amps = $\frac{\text{Volts}}{\text{Ohms}}$ Area of Circle = (0.785) (Diameter²) or (Π) (Radius²) Area of Cone (lateral area) = (Π) (Radius) $\sqrt{\text{Radius}^2 + \text{Height}^2}$ Area of Cone (total surface area) = (Π) (Radius) (Radius + $\sqrt{\text{Radius}^2 + \text{Height}^2}$) Area of Cylinder (total outside surface area) = [Surface Area of End #1] + [Surface Area of End #2] + [(Π) (Diameter) (Height or Depth)] Area of Rectangle = (Length) (Width) Area of a Right Triangle = $\frac{(Base)(Height)}{2}$ Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$ Average (geometric mean) = $[(X_1) (X_2) (X_3) (X_4) (X_n)]^{1/n}$ The *n*th root of the product of *n* numbers Chemical Feed Pump Setting, % Stroke = $\frac{(\text{Desired Flow})(100\%)}{\text{Maximum Flow}}$ Chemical Feed Pump Setting, mL/min = $\frac{(Flow, m^3/day)(Dose, mg/L)}{(Chemical Feed Density, g/cm^3)(Active Chemical, %)(1,440)}$ Circumference of Circle = (Π) (Diameter) Composite Sample Single Portion = $\frac{(Instantaneous Flow)(Total Sample Volume)}{(Number of Portions)(Average Flow)}$ Degrees Celsius = [(Degrees Fahrenheit - 32) (⁵/9)] or $\frac{(^{\circ} F - 32)}{1.8}$ Degrees Fahrenheit = [(Degrees Celsius) $(^{9}/_{5}) + 32$] or [(Degrees Celsius) (1.8) + 32] Detention Time = $\frac{\text{Volume}}{\text{Flow}}$ Note: Units must be compatible. Electromotive Force (E.M.F), volts = (Current, amps) (Resistance, ohms) or E =IR Feed Rate, kg/day = $\frac{(\text{Dosage,mg/L})(\text{Flow Rate, m}^3/\text{day})}{(\text{Purity,DecimalPercentage})1,000}$ Feed Rate, litre/min (Fluoride Saturator) = $\frac{(Plant capacity, litre/min)(Dosage, mg/L)}{(Plant capacity, litre/min)(Dosage, mg/L)}$ $(18,000 \, \text{mg/L})$

Filter Backwash Rise Rate, em/min =
$$\frac{\text{Water Rise, cm}}{\text{Time, minute}}$$

Filter Drop Test Velocity, meter/min = $\frac{\text{Water Drop, m}}{\text{Time of Drop, minute}}$
Filter Trop Test Velocity, meter/min = $\frac{\text{Flow, L/sec}}{\text{Filter Area, m}^2}$
Filter Flow Rate or Backwash Rate, L/m² sec = $\frac{\text{Flow, L/sec}}{\text{Filter Area, m}^2}$
Filter Yield, kg/m² hr = $\frac{(\text{Solids Concentration, %}(\text{Sludge Feed Rate, 1/hr)(10)}{(\text{Surface Area of Filter, m}^2)}$
Flow Rate, m³/sec = (Area, m³) (Velocity, m/sec) or Q = AV where: Q = flow rate, A = area, V= velocity
Force, Newton = (Pressure, pascals) (Area, m²)
Litres/Capita/Day = $\frac{\text{Volume of Water Produced, L/day}}{\text{Population}}$
Hardness, as mg CaCO₂/1. = $\frac{(\text{Tirrant Volume, m1.)}(1,000)}{(3,960) (Decimal Pump Efficiency)}$ Only when the titration factor is 1.00 of EDTA
Horsepower, Brake (bhp) = $\frac{(\text{Flow, gpm})(\text{Head, ft})}{(3,960) (Decimal Pump Efficiency)}$ (Decimal Motor Efficiency)
Horsepower, Motor (mhp) = $\frac{(\text{Flow, gpm})(\text{Head, ft})}{3,960}$
Hydraulic Loading Rate, m³/m² day = $\frac{\text{Total Flow Applied, m}^3/\text{day}}{\text{Area, m}^2}$
Hypochlorite Strength, % = $\frac{(\text{Chlorine Required, Kg)(100)}{(\text{Hypochlorite Solution Needed, Kg)}}$
Hass, kg = $\frac{(\text{Volume, n}^3)(\text{Concentration, mg/L)}{1,000}$
Mass Flux, kg/day = $\frac{(\text{Volume, m}^3/\text{day})(\text{Concentration, mg/L})}{1,000}$

Normality = <u>Number of Equivalent Weights of Solute</u> Litres of Solution Number of Equivalent Weights = $\frac{\text{Total Weight}}{\text{Equivalent Weight}}$ Number of Moles = $\frac{\text{Total Weight}}{\text{Molecular Weight}}$ Power, kW = $\frac{(Flow, L/sec) (Head, m)(9.8)}{1000}$ Reduction in Flow, $\% = \frac{(\text{Original Flow - Reduced Flow})(100\%)}{\text{Original Flow}}$ Removal, $\% = \frac{(\text{In} - \text{Out})(100)}{\text{In}}$ Slope, $\% = \frac{\text{Drop or Rise}}{\text{Distance}} \ge 100$ Solids, mg/L = $\frac{(\text{Dry Solids, grams})(1,000,000)}{\text{Sample Volume, mL}}$ Solids Concentration, $mg/L = \frac{Weight, mg}{Volume L}$ Specific Gravity = Specific Weight of Substance, kg/L Specific Weight of Water, kg/L Surface Loading Rate, $Lpd/m^2 = \frac{Flow, Lpd}{Area m^2}$ Three Normal Equation = $(N_1 \times V_1) + (N_2 \times V_2) = (N_3 \times V_3)$, where $V_1 + V_2 = V_3$ Two Normal Equation = N1 x $V_1 = N_2 x V_2$, where N = concentration (normality), V = volume or flow Velocity, m/second = $\frac{\text{Flow Rate, m}^3/\text{sec}}{\text{Area m}^2}$ or $\frac{\text{Distance, m}}{\text{Time second}}$ Volume of Cone = (1/3) (0.785) (Diameter²) (Height) Volume of Cylinder = (0.785) (Diameter²) (Height) Volume of Rectangular Tank = (Length) (Width) (Height) Watts (DC circuit) = (Volts) (Amps) Watts (AC circuit) = (Volts) (Amps) (Power Factor) Weir Overflow Rate, $Lpd/m = \frac{Flow, Lpd}{Weir Length, m}$

Wire-to-Water Efficiency, % =	Water Horsepower, HP	x 100
	Power Input, HP or Motor HP	

Wire-to-Water Efficiency,
$$\% = \frac{(Flow, gpm)(Total Dynamic Head, ft)(0.746 kw/hp)(100)}{(3,960)(Electrical Demand, kilowatts)}$$

Alkalinity Relationships:					
Alkalinity, mg/L as CaCO ₃					
Result of	Hydroxide	Carbonate	Bicarbonate		
Titration	Alkalinity	Alkalinity	Concentration		
	as CaCO ₃	as CaCO ₃	as CaCO ₃		
$\mathbf{P} = 0$	0	0	Т		
$P < \frac{1}{2}T$	0	2P	T - 2P		
$P = \frac{1}{2}T$	0	2P	0		
$P > \frac{1}{2}T$	2P - T	2(T - P)	0		
$\mathbf{P} = \mathbf{T}$	Т	0	0		

*Key: P – phenolphthalein alkalinity; T – total alkalinity

Conversion Factors:

1 acre = 4046.9 square metres 1 cubic metre = 1,000 kilograms 1 cubic metre = 1,000 litres 1 cubic metre = 219.97 Imperial gallons 1 cubic metre per second = 19.01 MIGD 1 foot = 0.305 metre 1 gallon = 3.79 litres 1 hectare = 10,000 square metres 1 horsepower = 0.746 kW or 33,000 foot-pounds/min 1 metre head = 9.8 kPa 1 pound = 0.454 kilograms 1 pound per square inch = 6.89 kPa 1 square metre = 1.19 square yards 1% = 10,000 mg/LII or pi = 3.14159

Abbreviations:

cm	centimetres	mL	millilitre
DO	dissolved oxygen	MLD	million litres per day
g	grams	ppb	parts per billion
kPa	kilopascals	ppm	parts per million
kg	kilograms	psi	pounds per square inch
kW	kilowatt	Q	flow
L	litres	SS	settleable solids
Lpd	litres per day	TTHM	Total trihalomethanes
Lpm	litres per minute	TOC	total organic carbon
m	metres	TSS	total suspended solids
mg/L	milligrams per litre	VS	volatile solids
MIGD	million Imperial gallons per day		