Alkalinity, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{\text { (Titrant Volume, mL)(Acid Normality)(50,000) }}{\text { Sample Volume, } \mathrm{mL}}$
Amps $=\frac{\text { Volts }}{\text { Ohms }}$
Area of Circle $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)$ or $(\Pi)\left(\right.$ Radius $\left.^{2}\right)$
Area of Cone (lateral area) $=(\Pi)($ Radius $) \sqrt{\text { Radius }^{2}+\text { Height }^{2}}$
Area of Cone (total surface area) $=(\Pi)($ Radius $)\left(\right.$ Radius $\left.+\sqrt{\text { Radius }^{2}+\text { Height }^{2}}\right)$
Area of Cylinder (total outside surface area) $=[$ Surface Area of End \#1] $+[$ Surface Area of End \#2] + [(П) (Diameter) (Height or Depth)]

Area of Rectangle $=($ Length $)($ Width $)$
Area of a Right Triangle $=\frac{(\text { Base })(\text { Height })}{2}$
Average (arithmetic mean) $=\frac{\text { Sum of All Terms }}{\text { Number of Terms }}$
Average (geometric mean) $=\left[\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right)\left(\mathrm{X}_{n}\right)\right]^{1 / n}$ The nth root of the product of n numbers
Chemical Feed Pump Setting, \% Stroke $=\frac{(\text { Desired Flow) }(100 \%)}{\text { Maximum Flow }}$
Chemical Feed Pump Setting, $\mathrm{mL} / \mathrm{min}=\frac{\left(\text { Flow, } \mathrm{m}^{3} / \text { day }\right)(\text { Dose, } \mathrm{mg} / \mathrm{L})}{\left(\text { Chemical Feed Density, } \mathrm{g} / \mathrm{cm}^{3}\right)(\text { Active Chemical, } \%)(1,440)}$
Circumference of Circle $=(\Pi)($ Diameter $)$
Composite Sample Single Portion $=\frac{\text { (Instantaneous Flow) (Total Sample Volume) }}{(\text { Number of Portions) }(\text { Average Flow) }}$
Degrees Celsius $=[($ Degrees Fahrenheit -32$)(5 / 9)]$ or $\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$

Degrees Fahrenheit $=[($ Degrees Celsius $)(9 / 5)+32]$ or [(Degrees Celsius $)(1.8)+32]$
Detention Time $=\frac{\text { Volume }}{\text { Flow }} \quad$ Note: Units must be compatible.
Electromotive Force (E.M.F), volts $=($ Current, amps $)($ Resistance, ohms) or $E=I R$
Feed Rate, $\mathrm{kg} /$ day $=\frac{(\text { Dosage }, \mathrm{mg} / \mathrm{L})\left(\text { Flow Rate, } \mathrm{m}^{3} / \text { day }\right)}{(\text { Purity, DecimalPercentage }) 1,000}$

Feed Rate, litre/min (Fluoride Saturator) $=\frac{\text { (Plantcapacity,litre } / \mathrm{min})(\text { Dosage, } \mathrm{mg} / \mathrm{L})}{(18,000 \mathrm{mg} / \mathrm{L})}$

Filter Backwash Rise Rate, $\mathrm{cm} / \mathrm{min}=\frac{\text { Water Rise, } \mathrm{cm}}{\text { Time, minute }}$
Filter Drop Test Velocity, meter/min $=\frac{\text { Water Drop, } m}{\text { Time of Drop, minute }}$
Filter Flow Rate or Backwash Rate, $\mathrm{L} / \mathrm{m}^{2} \mathrm{sec}=\frac{\text { Flow, } \mathrm{L} / \mathrm{sec}}{\text { Filter Area, } \mathrm{m}^{2}}$
Filter Yield, $\mathrm{kg} / \mathrm{m}^{2} \mathrm{hr}=\frac{(\text { Solids Concentration, \%)(Sludge Feed Rate, } \mathrm{L} / \mathrm{hr})(10)}{\left(\text { Surface Area of Filter, } \mathrm{m}^{2}\right)}$
Flow Rate, $\mathrm{m}^{3} / \mathrm{sec}=\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)($ Velocity, $\mathrm{m} / \mathrm{sec})$ or $\mathrm{Q}=\mathrm{AV}$ where: $\mathrm{Q}=$ flow rate, $\mathrm{A}=$ area, $\mathrm{V}=$ velocity
Force, Newton $=($ Pressure, pascals $)\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)$
Litres/Capita/Day $=\frac{\text { Volume of Water Produced, L/day }}{\text { Population }}$
Hardness, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(1,000)}{\text { Sample Volume, } \mathrm{mL}}$ Only when the titration factor is 1.00 of EDTA
Horsepower, Brake (bhp) $=\frac{(\text { Flow, gpm })(\text { Head, } \mathrm{ft})}{(3,960)(\text { Decimal Pump Efficiency })}$
Horsepower, Motor $(\mathrm{mhp})=\frac{\text { (Flow, gpm) (Head, ft) }}{(3,960)(\text { Decimal Pump Efficiency) (Decimal Motor Efficiency) }}$
Horsepower, Water $(\mathrm{whp})=\frac{(\text { Flow, gpm })(\text { Head, } \mathrm{ft})}{3,960}$
Hydraulic Loading Rate, $\mathrm{m}^{3} / \mathrm{m}^{2}$ day $=\frac{\text { Total Flow Applied, } \mathrm{m}^{3} / \text { day }}{\text { Area, } \mathrm{m}^{2}}$
Hypochlorite Strength, $\%=\frac{(\text { Chlorine Required, } \mathrm{Kg})(100)}{\text { (Hypochlorite Solution Needed, } \mathrm{Kg} \text {) }}$
Leakage, $\mathrm{Lpd}=\frac{\text { Volume, } \mathrm{L}}{\text { Time, days }}$
Mass, $\mathrm{kg}=\frac{\left(\text { Volume, } \mathrm{m}^{3}\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mass Flux, $\mathrm{kg} /$ day $=\frac{\left(\text { Volume, } \mathrm{m}^{3} / \text { day }\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Milliequivalent $=(\mathrm{mL})($ Normality $)$
Molarity $=\frac{\text { Moles of Solute }}{\text { Litres of Solution }}$

Normality $=\frac{\text { Number of Equivalent Weights of Solute }}{\text { Litres of Solution }}$
Number of Equivalent Weights $=\frac{\text { Total Weight }}{\text { Equivalent Weight }}$
Number of Moles $=\frac{\text { Total Weight }}{\text { Molecular Weight }}$
Power, $\mathrm{kW}=\frac{(\text { Flow, } \mathrm{L} / \mathrm{sec})(\text { Head, } \mathrm{m})(9.8)}{1,000}$
Reduction in Flow, $\%=\frac{(\text { Original Flow }- \text { Reduced Flow })(100 \%)}{\text { Original Flow }}$
Removal, $\%=\frac{(\mathrm{In}-\mathrm{Out})(100)}{\mathrm{In}}$
Slope, $\%=\frac{\text { Drop or Rise }}{\text { Distance }} \times 100$
Solids, $\mathrm{mg} / \mathrm{L}=\frac{(\text { Dry Solids, grams })(1,000,000)}{\text { Sample Volume, } \mathrm{mL}}$
Solids Concentration, $\mathrm{mg} / \mathrm{L}=\frac{\text { Weight, } \mathrm{mg}}{\text { Volume, } \mathrm{L}}$
Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{kg} / \mathrm{L}}{\text { Specific Weight of Water, } \mathrm{kg} / \mathrm{L}}$
Surface Loading Rate, $\mathrm{Lpd} / \mathrm{m}^{2}=\frac{\text { Flow, } \mathrm{Lpd}}{\text { Area, } \mathrm{m}^{2}}$
Three Normal Equation $=\left(N_{1} \times V_{1}\right)+\left(N_{2} \times V_{2}\right)=\left(N_{3} \times V_{3}\right)$, where $V_{1}+V_{2}=V_{3}$
Two Normal Equation $=\mathrm{N} 1 \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}$, where $\mathrm{N}=$ concentration (normality), $\mathrm{V}=$ volume or flow
Velocity, $\mathrm{m} /$ second $=\frac{\text { Flow Rate }, \mathrm{m}^{3} / \mathrm{sec}}{\text { Area, } \mathrm{m}^{2}}$ or $\frac{\text { Distance, } \mathrm{m}}{\text { Time, second }}$
Volume of Cone $=(1 / 3)(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Cylinder $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Rectangular Tank $=($ Length $)($ Width $)($ Height $)$
Watts $($ DC circuit $)=($ Volts $)(A m p s)$
Watts $(\mathrm{AC}$ circuit $)=($ Volts $)(\mathrm{Amps})($ Power Factor $)$
Weir Overflow Rate, Lpd/m $=\frac{\text { Flow, Lpd }}{\text { Weir Length, } \mathrm{m}}$

Wire-to-Water Efficiency, $\%=\frac{\text { Water Horsepower, HP }}{\text { Power Input, HP or Motor HP }} \times 100$
Wire-to-Water Efficiency, $\%=\frac{(\text { Flow, gpm })(\text { Total Dynamic Head, ft })(0.746 \mathrm{kw} / \mathrm{hp})(100)}{(3,960)(\text { Electrical Demand, kilowatts })}$
Alkalinity Relationships:

Alkalinity, mg / L as CaCO_{3}			
Result of	Hydroxide Titration Alkalinity as CaCO_{3}	Carbonate Alkalinity as CaCO_{3}	Bicarbonate Concentration as CaCO_{3}
$\mathrm{P}=0$	0	0	T
$\mathrm{P}<1 / 2 \mathrm{~T}$	0	2 P	$\mathrm{T}-2 \mathrm{P}$
$\mathrm{P}=1 / 2 \mathrm{~T}$	0	2 P	0
$\mathrm{P}>1 / 2 \mathrm{~T}$	$2 \mathrm{P}-\mathrm{T}$	$2(\mathrm{~T}-\mathrm{P})$	0
$\mathrm{P}=\mathrm{T}$	T	0	0

*Key: P - phenolphthalein alkalinity; T - total alkalinity

Conversion Factors:

```
1 acre \(=4046.9\) square metres
1 cubic metre \(=1,000\) kilograms
1 cubic metre \(=1,000\) litres
1 cubic metre \(=219.97\) Imperial gallons
1 cubic metre per second = 19.01 MIGD
1 foot \(=0.305\) metre
1 gallon \(=3.79\) litres
1 hectare \(=10,000\) square metres
1 horsepower \(=0.746 \mathrm{~kW}\) or 33,000 foot-pounds \(/ \mathrm{min}\)
1 metre head \(=9.8 \mathrm{kPa}\)
1 pound \(=0.454\) kilograms
1 pound per square inch \(=6.89 \mathrm{kPa}\)
1 square metre \(=1.19\) square yards
\(1 \%=10,000 \mathrm{mg} / \mathrm{L}\)
\(\Pi\) or \(\mathrm{pi}=3.14159\)
```


Abbreviations:

cm	centimetres	mL	millilitre
DO	dissolved oxygen	MLD	million litres per day
g	grams	ppb	parts per billion
kPa	kilopascals	ppm	parts per million
kg	kilograms	psi	pounds per square inch
kW	kilowatt	Q	flow
L	litres	SS	settleable solids
Lpd	litres per day	TTHM	Total trihalomethanes
Lpm	litres per minute	TOC	total organic carbon
m	metres	TSS	total suspended solids
mg / L	milligrams per litre	VS	volatile solids
MIGD	million Imperial gallons per day		

