Alkalinity, $\mathbf{m g} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=\frac{(\text { Titrant Volume, } \mathrm{mL})(\text { Acid Normality })(50,000)}{\text { Sample Volume, } \mathrm{mL}}$
Amps $=\frac{\text { Volts }}{\text { Ohms }}$
Area of Circle* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)$
Area of Circle $=(3.14)\left(\right.$ Radius $\left.^{2}\right)$
Area of Cone (lateral area) $=(3.14)($ Radius $) \sqrt{\text { Radius }^{2}+\text { Height }^{2}}$
Area of Cone (total surface area) $=(3.14)($ Radius $)\left(\right.$ Radius $\left.+\sqrt{\text { Radius }^{2}+\text { Height }^{2}}\right)$
Area of Cylinder (total exterior surface area) $=[$ End \#1 SA $]+[$ End \#2 SA $]+[(3.14)($ Diameter $)($ Height or Depth)]
Where SA = surface area

Area of Rectangle* $=($ Length $)($ Width $)$
Area of Right Triangle* $=\frac{(\text { Base })(\text { Height })}{2}$
Average (arithmetic mean) $=\frac{\text { Sum of All Terms }}{\text { Number of Terms }}$
Average (geometric mean) $=\left[\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right)\left(\mathrm{X}_{n}\right)\right]^{1 / n} \quad$ The n th root of the product of n numbers
Blending or Three Normal Equation $=\left(C_{1} \times V_{1}\right)+\left(C_{2} \times V_{2}\right)=\left(C_{3} \times V_{3}\right)$
Where $V_{1}+V_{2}=V_{3} ; C=$ concentration, $V=$ volume or flow; Concentration units must match; Volume units must match
Chemical Feed Pump Setting, \% Stroke $=\frac{\text { Desired Flow }}{\text { Maximum Flow }} \times 100 \%$
Chemical Feed Pump Setting, mL/min =
(Flow, MGD)(Dose, $\mathrm{mg} / \mathrm{L})(3.785 \mathrm{~L} / \mathrm{gal})(1,000,000 \mathrm{gal} / \mathrm{MG})$
(Feed Chemical Density, $\mathrm{mg} / \mathrm{mL}$)(Active Chemical, \% expressed as a decimal)($1,440 \mathrm{~min} /$ day $)$
Chemical Feed Pump Setting, $\mathrm{mL} / \mathrm{min}=$ (Flow, m ${ }^{3} /$ day)(Dose, mg/L)
(Feed Chemical Density, $\mathrm{g} / \mathrm{cm}^{3}$)(Active Chemical, \% expressed as a decimal)($1,440 \mathrm{~min} /$ day $)$
Circumference of Circle $=(3.14)($ Diameter $)$
Composite Sample Single Portion $=\frac{(\text { Instantaneous Flow)(Total Sample Volume) }}{(\text { Number of Portions) }(\text { Average Flow) }}$
CT Calculation $=($ Disinfectant Residual Concentration, mg/L)(Time, min $)$

Degrees Celsius $=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$
Degrees Fahrenheit $=\left({ }^{\circ} \mathrm{C}\right)(1.8)+32$
Detention Time $=\frac{\text { Volume }}{\text { Flow }}$ Units must be compatible
Dilution or Two Normal Equation $=\left(C_{1} \times V_{1}\right)=\left(C_{2} \times V_{2}\right)$ Where $C=$ Concentration, $V=$ volume or flow; Concentration units must match; Volume units must match

Electromotive Force, volts* $=($ Current, amps) $($ Resistance, ohms)
Feed Rate, Ib/day* $=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})(\text { Flow, MGD })(8.34 \mathrm{lb} / \mathrm{gal})}{\text { Purity, } \% \text { expressed as a decimal }}$
Feed Rate, kg/day* $=\frac{(\text { Dosage }, \mathrm{mg} / \mathrm{L})\left(\text { Flow Rate, } \mathrm{m}^{3} / \text { day }\right)}{(\text { Purity, } \% \text { expressed as a decimal) }(1,000)}$
Feed Rate (Fluoride), Ib/day =
(Dosage, mg/L)(Capacity, MGD)(8.34 lb/gal)
(Available Fluoride Ion, \% expressed as a decimal)(Purity, \% expressed as a decimal)
Feed Rate (Fluoride), kg/day =

$$
\left(\text { Dosage, mg/L)(Capacity, } \mathrm{m}^{3} / \text { day }\right)
$$

(Available Fluoride Ion, \% expressed as a decimal)(Purity, \% expressed as a decimal)(1,000)
Feed Rate (Fluoride Saturator), gpm $=\frac{\text { (Plant capacity, gpm) }(\text { Dosage, } \mathrm{mg} / \mathrm{L})}{18,000 \mathrm{mg} / \mathrm{L}}$
Feed Rate (Fluoride Saturator), Lpm $=\frac{(\text { Plant capacity, } \mathrm{Lpm})(\text { Dosage, } \mathrm{mg} / \mathrm{L})}{18,000 \mathrm{mg} / \mathrm{L}}$
Filter Backwash Rise Rate, $\mathbf{i n} / \mathbf{m i n}=\frac{\left(\text { Backwash Rate, } \mathrm{gpm} / \mathrm{ft}^{2}\right)(12 \mathrm{in} / \mathrm{ft})}{7.48 \mathrm{gal} / \mathrm{ft}^{3}}$
Filter Backwash Rise Rate, $\mathbf{c m} / \mathbf{m i n}=\frac{\text { Water Rise }, \mathrm{cm}}{\text { Time, } \min }$
Filter Drop Test Velocity, $\mathrm{ft} / \mathrm{min}=\frac{\text { Water Drop, } \mathrm{ft}}{\text { Time of Drop, } \min }$
Filter Drop Test Velocity, $\mathbf{m} / \mathbf{m i n}=\frac{\text { Water Drop, } m}{\text { Time of Drop, } \min }$
Filter Loading Rate, $\mathbf{g p m} / \mathrm{ft}^{2}=\frac{\text { Flow, } \mathrm{gpm}}{\text { Filter area, } \mathrm{ft}^{2}}$

Filter Loading Rate, L/sec $/ \mathrm{m}^{2}=\frac{\text { Flow, } \mathrm{L} / \mathrm{sec}}{\text { Filter area, } \mathrm{m}^{2}}$
Filter Yield, lb/hr/ft ${ }^{2}=\frac{(\text { Solids Loading, } \mathrm{lb} / \text { day })(\text { Recovery, } \% \text { expressed as a decimal })}{(\text { Filter Operation, hr/day })\left(\mathrm{Area}, \mathrm{ft}^{2}\right)}$
Filter Yield, $\mathbf{k g} / \mathbf{h r} / \mathbf{m}^{\mathbf{2}}=\frac{(\text { Solids Concentration, \% expressed as a decimal)(Sludge Feed Rate, L/hr)(10) }}{\text { (Surface Area of Filter, } \mathrm{m}^{2} \text {) }}$
Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}^{*}=\left(\right.$ Area, $\left.\mathrm{ft}^{2}\right)($ Velocity, $\mathrm{ft} / \mathrm{sec})$
Flow Rate, $\mathrm{m}^{3} / \mathrm{sec}^{*}=\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)($ Velocity, $\mathrm{m} / \mathrm{sec})$
Force, lb* $=($ Pressure, psi$)\left(\right.$ Area, $\left.\mathrm{in}^{2}\right)$
Force, newtons* $=\left(\right.$ Pressure, pascals)(Area, $\left.\mathrm{m}^{2}\right)$
Hardness, as $\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(1,000)}{\text { Sample Volume, } \mathrm{mL}}$ Only when the titration factor is 1.00 of EDTA
Horsepower, Brake, $\mathbf{h p}=\frac{(\text { Flow, gpm })(\mathrm{Head}, \mathrm{ft})}{(3,960)(\text { Pump Efficiency, } \% \text { expressed as a decimal) }}$
Horsepower, Brake, $\mathbf{k W}=\frac{(9.8)\left(\text { Flow, } \mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})}{\text { (Pump Efficiency, } \% \text { expressed as a decimal })}$
Horsepower, Motor, hp =
(Flow, gpm)(Head, ft)
$(3,960)$ (Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)
Horsepower, Motor, kW =
(9.8)(Flow, $\left.\mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})$
(Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)
Horsepower, Water, $\mathbf{h p}=\frac{(\text { Flow, gpm })(\mathrm{Head}, \mathrm{ft})}{3,960}$
Horsepower, Water, kW = (9.8)(Flow, m³/sec)(Head, m)
Hydraulic Loading Rate, $\mathbf{g p d} / \mathrm{ft}^{2}=\frac{\text { Total Flow Applied, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Hydraulic Loading Rate, $\mathbf{m}^{3} /$ day $/ \mathbf{m}^{2}=\frac{\text { Total Flow Applied, } \mathrm{m}^{3} / \text { day }}{\text { Area, } \mathrm{m}^{2}}$
Hypochlorite Strength, $\%=\frac{\text { Chlorine Required, } \mathrm{lb}}{(\text { Hypochlorite Solution Needed, gal)(} 8.34 \mathrm{lb} / \mathrm{gal})} \times 100 \%$
Hypochlorite Strength, $\%=\frac{(\text { Chlorine Required, } \mathrm{kg})(100)}{(\text { Hypochlorite Solution Needed, } \mathrm{kg})}$

Leakage, gpd $=\frac{\text { Volume, gal }}{\text { Time, days }}$
Leakage, Lpd $=\frac{\text { Volume, } L}{\text { Time, days }}$
Loading Rate, Ib/day* $=($ Flow, MGD $)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Loading Rate, $\mathbf{k g} /$ day $^{*}=\frac{\left(\text { Flow, } \mathrm{m}^{3} / \text { day }\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mass, $\mathbf{l b}^{*}=($ Volume, $M G)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Mass, $\mathbf{k g}^{*}=\frac{\left(\text { Volume }, \mathrm{m}^{3}\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Milliequivalent $=(\mathrm{mL})($ Normality $)$
Molarity $=\frac{\text { Moles of Solute }}{\text { Liters of Solution }}$
Normality $=\frac{\text { Number of Equivalent Weights of Solute }}{\text { Liters of Solution }}$
Number of Equivalent Weights $=\frac{\text { Total Weight }}{\text { Equivalent Weight }}$
Number of Moles $=\frac{\text { Total Weight }}{\text { Molecular Weight }}$
Power, $\mathbf{k W}=\frac{(\text { Flow, } \mathrm{L} / \mathrm{sec})(\text { Head, } \mathrm{m})(9.8)}{1,000}$
Reduction in Flow, \% $=\frac{(\text { Original Flow }- \text { Reduced Flow })(100 \%)}{\text { Original Flow }}$
Removal, \% $=\frac{\text { In }- \text { Out }}{\text { In }} \times 100 \%$
Slope, \% $=\frac{\text { Drop or Rise }}{\text { Distance }} \times 100 \%$
Solids, $\mathbf{m g} / \mathrm{L}=\frac{(\text { Dry Solids, } \mathrm{g})(1,000,000)}{\text { Sample Volume, } \mathrm{mL}}$
Solids Concentration, $\mathrm{mg} / \mathrm{L}=\frac{\text { Weight, } \mathrm{mg}}{\text { Volume, } \mathrm{L}}$
Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{lb} / \mathrm{gal}}{8.34 \mathrm{lb} / \mathrm{gal}}$

Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{kg} / \mathrm{L}}{1.0, \mathrm{~kg} / \mathrm{L}}$
Surface Loading Rate or Surface Overflow Rate, gpd/ft ${ }^{2}=\frac{\text { Flow, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Surface Loading Rate or Surface Overflow Rate, Lpd $/ \mathrm{m}^{2}=\frac{\text { Flow, Lpd }}{\text { Area, } \mathrm{m}^{2}}$
Threshold Odor Number $=\frac{A+B}{A} \quad$ Where $A=$ volume of odor causing sample, $B=$ volume of odor free water

Velocity, $\mathrm{ft} / \mathbf{s e c}=\frac{\text { Flow Rate, } \mathrm{ft}^{3} / \mathrm{sec}}{\text { Area, } \mathrm{ft}^{2}}$
Velocity, $\mathrm{ft} / \mathbf{s e c}=\frac{\text { Distance, } \mathrm{ft}}{\text { Time, sec }}$
Velocity, $\mathbf{m} / \mathbf{s e c}=\frac{\text { Flow Rate }, \mathrm{m}^{3} / \mathrm{sec}}{\text { Area, } \mathrm{m}^{2}}$
Velocity, $\mathbf{m} / \mathbf{s e c}=\frac{\text { Distance, } m}{\text { Time, } \mathrm{sec}}$
Volume of Cone* $=(1 / 3)(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Cylinder* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Rectangular Tank* = (Length)(Width)(Height)
Water Use, gpcd $=\frac{\text { Volume of Water Produced, gpd }}{\text { Population }}$
Water Use, Lpcd $=\frac{\text { Volume of Water Produced, Lpd }}{\text { Population }}$
Watts (AC circuit) $=($ Volts $)($ Amps $)($ Power Factor $)$
Watts (DC circuit) = (Volts)(Amps)
Weir Overflow Rate, gpd/ft $=\frac{\text { Flow, gpd }}{\text { Weir Length, } \mathrm{ft}}$
Weir Overflow Rate, Lpd/m $=\frac{\text { Flow, Lpd }}{\text { Weir Length, } m}$
Wire-to-Water Efficiency, $\%=\frac{\text { Water } \mathrm{hp}}{\text { Motor } \mathrm{hp}} \times 100 \%$
Wire-to-Water Efficiency, $\%=\frac{(\text { Flow, gpm })(\text { Total Dynamic Head, ft) }(0.746 \mathrm{~kW} / \mathrm{hp})(100 \%)}{(3,960)(\text { Electrical Demand, } \mathrm{kW})}$

CCelsius	Lpm liters per minute
cfs.............cubic feet per second	LSI Langelier Saturation Index
cm.............centimeters	m.............. meters
DO.............dissolved oxygen	mg............ milligrams
EMFelectromotive force	MG million gallons
F................Fahrenheit	MGD.......... million US gallons per day
ft................feet	min........... minutes
ft lbfoot-pound	mL............ milliliters
g...............grams	ML million liters
gal.............US gallons	MLD million liters per day
gfdUS gallons flux per day	ORP oxidation reduction potential
gpcdUS gallons per capita per day	ppb parts per billion
gpdUS gallons per day	ppm parts per million
gpggrains per US gallon	psi............ pounds per square inch
gpmUS gallons per minute	Q flow
hp..............horsepower	RPM revolutions per minute
hrhours	SDI sludge density index
in...............inches	sec second
kg..............kilograms	SS settleable solids
km.............kilometers	TOC total organic carbon
kPa............kilopascals	TSS total suspended solids
kW.............kilowatts	TTHM total trihalomethanes
kWhkilowatt-hours	VS volatile solids
L................liters	W.............. watts
lb..............pounds	yd............. yards
Lpcdliters per capita per day	yr.............. year
Lpdliters per day	

Conversion Factors

1 acre $=43,560 \mathrm{ft}^{2}$	1 inch................................ $=2.54 \mathrm{~cm}$
$=4,046.9 \mathrm{~m}^{2}$	1 liter per second $=0.0864$ MLD
1 acre foot of water............... $=326,000 \mathrm{gal}$	1 meter of water $=9.8 \mathrm{kPa}$
1 cubic foot of water.............. $=7.48 \mathrm{gal}$	1 metric ton......................... $=2,205 \mathrm{lb}$
$=62.4 \mathrm{lb}$	$=1,000 \mathrm{~kg}$
1 cubic foot per second $\ldots . . \ldots \ldots . .=0.646 \mathrm{MGD}$	1 mile $=5,280 \mathrm{ft}$
$=448.8 \mathrm{gpm}$	$=1.61 \mathrm{~km}$
1 cubic meter of water........... $=1,000 \mathrm{~kg}$	1 million US gallons per day ... $=694 \mathrm{gpm}$
$=1,000 \mathrm{~L}$	$=1.55 \mathrm{ft}^{3} / \mathrm{sec}$
$=264 \mathrm{gal}$	1 pound $=0.454 \mathrm{~kg}$
1 foot $=0.305 \mathrm{~m}$	1 pound per square inch $=2.31 \mathrm{ft} \mathrm{of} \mathrm{water}$
1 foot of water $=0.433 \mathrm{psi}$	$=6.89 \mathrm{kPa}$
1 gallon (US) $=3.785 \mathrm{~L}$	1 square meter $=1.19 \mathrm{yd}^{2}$
$=8.34 \mathrm{lb}$ of water	1 ton $=2,000 \mathrm{lb}$
1 grain per US gallon............. $=17.1 \mathrm{mg} / \mathrm{L}$	1\% $=10,000 \mathrm{mg} / \mathrm{L}$
1 hectare $=10,000 \mathrm{~m}^{2}$	π or pi $=3.1$
1 horsepower $=0.746 \mathrm{~kW}$	
$=746 \mathrm{~W}$ $=33,000 \mathrm{ft}$	

Alkalinity Relationships

All Alkalinity expressed as mg / L as $\mathrm{CaCO} 3 \bullet \mathrm{P}$ - phenolphthalein alkalinity $\bullet \mathrm{T}$ - total alkalinity

Result of Titration	Hydroxide Alkalinity	Carbonate Alkalinity	Bicarbonate Concentration
$P=0$	0	0	T
$P<1 / T$	0	$2 P$	$T-2 P$
$P=1 / 2 T$	0	$2 P$	0
$P>1 / 2 T$	$2 P-T$	$2(T-P)$	0
$P=T$	T	0	0

[^0]- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. $\left(m^{2}\right)$.

Electromotive Force (EMF), Volts

Force, Ibs (Newtons)

Volume of Cone

Area of Rectangle

Feed Rate, Ibs/day (kg/day)

Loading Rate, Ibs/day (kg/day)

Volume of Cylinder

Area of Right Triangle

Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}\left(\mathrm{m}^{3} / \mathrm{sec}\right)$

Volume of Rectangular Tank

*Pie Wheel Format for this equation is available at the end of this document

[^0]: *Pie Wheel Format for this equation is available at the end of this document

